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Abstract

In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In

particular, the problem of detecting thin wires in the presence of image clutter and noise was studied.

Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough

so that the pilot has enough time to take evasive action is difficult, as their images can be less than

one or two pixels wide. After reviewing the line detection literature, an algorithm for sub-pixel edge

detection proposed by Steger was identified as having good potential to solve the considered task. The

algorithm was tested using a set of images synthetically generated by combining real outdoor images

with computer generated wire images. The performance of the algorithm was evaluated both, at the

pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires

are not too thin (or distant) and that some post processing is performed to remove false alarms due to

clutter.
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1 Introduction

Continued advances in the fields of image processing and computer vision have raised interest in their

suitability in aiding pilots to early detection of possible obstacles in their flight trajectories. For

example, as part of the High Speed Research (HSR) Vision program at the NASA Ames Research

Center, we have recently studied, designed, and tested a computer vision system capable of real-time

obstacle detection during mid-flight of an aircraft [5, 11]. Before that, obstacle detection on runways

during take-offs and landings was also studied [10].

Figure 1: Thin wire with clouds in the background, and noise due to camera jitter.

Some of our previous results can be naturally extended to obstacle detection for low-altitude flight of

helicopters. However, the fact that the aircraft is close to the ground for most of the time, places more

severe requirements to the algorithms to be used. For example in the image shown in figure 1, the

system must deal with multiple ground-based obstacles such as wires, trees, etc. in the presence of

severe camera jitter and ever present cluttered background due to the ground. Of these obstacles, the

most difficult to detect are wires since they are very thin and their image from the rotorcraft can be



lessthana pixel wideat the time to collision.

In this report we describe a preliminary study on the use of a line detection algorithm to detect wire

obstacles in the path of rotorcrafts flying at low altitudes. An algorithm proposed by Steger [15] and

a Hough transform to eliminate false alarms were identified as good candidates for this task since they

are capable of line detection with sub-pixel accuracy. The algorithms are described in section 3. Due to

the fact that real data was not available to test the algorithms, a set of testing data was generated by

combining natural background images with computer generated wires, corrupted with synthetic noise.

The procedure used to generate the data is described in section 4. In order to evaluate the performance

of the algorithm a set of experiments were conducted for different sizes of wires at various distances.

The experimental protocol used in these experiments is described in section 5 and the obtained results

are summarized in section 6. Finally, the conclusions and directions for future research are discussed

in section 7.

2 Needs and Requirements

NASA's need for enhanced capabilities in obstacle detection using image processing requires robust,

reliable and fast techniques. Low-altitude rotorcraft navigation must often avoid ground-based obstacles

such as electric wires, antennas, poles, trees and buildings. Electric wires are very thin objects and

hence their images can have sub-pixel thickness. On the other hand, trees and buildings typically

occupy several pixels. Furthermore, low-altitude flight implies, in general, severe background clutter

due to the ground. Thus, the obstacle detection techniques should provide a high probability of timely

detection while maintaining a low probability of false alarm in noisy, cluttered images of obstacles

exhibiting a wide range of sizes and complexities. Moreover, these techniques should work well under

the controlled conditions found in a laboratory and with data closely matching the hypothesis used in



thedesignprocess,but it mustbeinsensitive- i.e. mustbe robust - to data uncertainty due to various

sources, including sensor noise, camera jitter, weather conditions, and cluttered backgrounds.

3 Wire Detection using Computer Vision

Electric wires between poles hang forming catenary curves and wires holding hanging bridges hang

forming parabola curves. However, for detection purposes these curves, can be approximated as piece-

wise linear. Thus, for this study we have confined ourselves to the problem of line detection in cluttered

images. Furthermore, since wires are thin and their images from a far enough distance are typically

less than a pixel wide, we paid special attention to algorithms that could provide sub-pixel accuracy.

3.1 Line Detection Algorithms

Detection of curvilinear and piece-wise linear structures in gray scale images has a wide range of appli-

cations including medical imaging, remote sensing, photogrammetry and line drawing understanding

and has been the focus of much attention in computer vision research. Next, we present a brief overview

of line detection techniques. For more details see for example [9].

• Edge detection based approaches

Lines can be detected by locating "edges" - i.e. pixels where the image gray levels undergo large

variations. Thus, most edge-based line detection techniques rely on operators approximating the

image gradient. Examples of this approach are the Roberts, Prewitt, and Sobel operators where

the image gradient components are approximated as weighted averages of gray level differences

in the pixel neighborhood, computed using a pair of small masks. Edges are then found by

thresholding the magnitude of the image gradient. This procedure typically results in "thick

edges" that must be thinned and gaps that must be closed using a cleaning procedure.

3
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Figure 2: Normal representation of the line

Alternatively, edges can be located by finding the zero-crossings of the image Laplacian. Since

the second derivative operator is very sensitive to noise, the image Laplacian is usually applied

in conjunction with a noise filtering such as a Gaussian filter.

Probably, the edge detector most commonly used today is the Canny edge operator which uses

first derivative of Gaussian filters to closely approximate the operator with optimal signal-to-noise

ratio and edge localization.

Hough transform based approaches

Lines and curves can be found by linking adjacent edges into contours. The Hough transform was

introduced to detect complex patterns and quickly adapted to detect lines and curves. The main

idea of the Hough transform is to map the pattern detection problem into the easier problem of

detecting a peak in the space defined by a set of parameters describing the pattern being sought.

Consider for example, a line expressed using its normal representation (see figure 2):

p = xcos0 + ysin0

where p represents the distance between the image origin and the line and 9 is the line orientation.

Each edge pixel (xp, yp) constrains the set of possible pairs of parameters (p, 8) of lines containing

4



theedgeby the sinusoidal expression:

p = xp cos 0 + yp sin 0

Collinear edges share an unique pair (p, 0) which must satisfy all the constraints and thus corre-

sponds to the point in parameter space where all the associated constraints intersect. The longer

the line, the more edges sharing the same pair of parameters and the larger the number of con-

straints intersecting at one point in parameter space. Thus, lines can be found by discretizing the

parameter space, associating to each cell a counter of the number of constraints passing through

the cell, and finding peaks among the counter values.

Curve fitting based approaches

Splines are widely used to represent curves. Although splines can be made by joining any kind

of function end to end, the most commonly used splines use piecewise cubic polynomials. Cu-

bic polynomials provide enough degrees of freedom to determine edge location and orientation.

Algorithms for edge detection using B-splines axe described in [2] and [7].

Detection of thin lines

Thin lines can be detected by modeling them as objects with parallel edges [4, 6] and using a pair

of edge detector filters to find the left and right edges of the line or by using differential geometry

properties to find ridges and ravines on the image surface z(x, y) [13, 12, 3, 1, 8]. Recently, Steger

[15] proposed a detection algorithm based on differential geometry capable of detecting lines with

sub pixel accuracy. He applied the algorithm to detect of roads from satellite images and to

detect very thin lines in MR and angiogram medical images. Steger's algorithm was capable

of detecting lines at different scales, even in the presence of severe clutter. Furthermore, the

algorithm retrieved the precise line locations (defined as their median axis) and the line widths



with subpixel accuracy.Due to the quality of these results, and the similarity between the

complexity of the images used in [15] and the ones we are interested for this study, it was decided

to evaluate the feasibility of using this algorithm for wire detection.

3.2 Steger's Unbiased Detector of Curvilinear Structures

Next, the main ideas of the detection algorithm proposed by Steger are summarized for the 1D case.

A more complete description, including its generalization to 2D, can be found in [15, 14, 16, 17].

The algorithm is based on the concept that a line can be thought of as a one-dimensional manifold in

T_2 with a well defined width w. Similarly, curvilinear structures in 2D can be modeled as curves s(t)

that exhibit a 1D line profile in the direction perpendicular to the line - i.e. perpendicular to s'(t).

Then, an ideal one-dimensional line profile can be modeled as a symmetrical bar-shaped profile given

by
f

h(z) = _ h, I z l<_w

( o, Izl>w

(1)

where w is the width of the line and h is the contrast, or as a more general asymmetrical bar-shaped

profiled given by

0, x < -w

fa(x) = 1, t x l< w

a, Ixl>w

(2)

where a E [0, 1]. A more gradual drop between the line and the background can be modeled by a

parabolic profile:

f

h(1 - (_lw)_),I_I<
fp(x)

o, Izl>w

(3)



(a) (b) (c)

Figure 3: (a) Smoothed parabolic line profile. (b) Convolution with the first derivative of a Gaussian.

(c) Convolution with the second derivative of a Gaussian.

A line with a profile given by (3) can be found in an ideal noiseless image z(x) by determining the

points where z_(x) = O. Salient lines can be identified by imposing that the magnitude of the second

derivative z"(x) at the point where z_(x) = 0 should be sufficiently large. In the presence of noise, as

discussed in the previous section, the derivatives of the image should be estimated by convolving the

image with the derivatives of a Gaussian smoothing kernel with standard deviation a. The space-scale

behavior of the smoothed parabolic profile and its convolution with the first and second derivative of

Gaussian filters is shown in figure 3. It can be seen that it is possible to detect the precise location

of the line for all a. However, if the line follows a profile like (1) or (2), it can be shown that the

magnitude of the convolution with the second derivative of the Gaussian has a clear maximum at the

true image location only if

W

The width of the line can be estimated by looking at the places where the magnitude of the output of

the first derivative of the Gaussian is maximum. It can be shown that if the line profile is symmetrical

and the width is small the width will be estimated too large. Furthermore, in the case of parabolic

profiles, the width will be estimated too large for a range of widths. In either case, the mapping

between the estimated and the true width can be inverted and the true width can be determined with

high accuracy. However, if the profile is not symmetrical, the estimated line location is biased towards

7



the weak side of the line:

_2

l- ln(1 - a)
2w

but if a is known, the bias can be corrected.

3.3 Post Processing

After lines are detected using the above algorithm, noise and false alarms due to image clutter are

reduced by rejecting short lines. This is accomplished by thresholding a Hough transform of the image

obtained using the line pixels. The threshold used was fixed to

Th = mean + 0.5(max - min) (4)

where mean, max, and min are the mean, maximum and minimum counter values in the parameter

space, respectively.

4 Data Modeling and Simulation

In order to characterize the performance of the detection algorithm using statistical tests with a given

accuracy, we must have large populations of sample representative images. Unfortunately, at the

time of this study real testing data was unavailable. Therefore, realistic testing data was generated

by combining real (background) images with synthetically generated wires that were corrupted using

noise models. The procedure used to generate these images is described next.
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4.1 Illumination Model

Figure 4: Illumination on a surface.

The scene illumination was assumed to have two distinct light sources: ambient light (i.e. diffused light

from the landscape, sky and clouds) and a distant point light source (i.e. the Sun/Moon) as shown in

figure 4. Furthermore, it was assumed that the ambient light impinged equally on all surfaces of the

wire, from all directions. Thus, the reflected light from the wire to the image plane is given by

I = I=K,,

where Ia is the intensity of the ambient light and Ka is the ambient reflection coefficient. For the point

light source, the Phong illumination model was used. Thus, the reflected light from the wire to the



imageplanedueto a point light sourcecanbemodeledas

1 = At Ip[Kp os(0) + w(e)cosn( )]

where Ip is the light intensity of the point light source, fatt is the light attenuation factor 1, Kp is the

diffusion-reflection coefficient of the wire surface w.r.t, the specific light spectrum of the light source,

w(8) is the material specular-reflection coefficient.

The typical thickness of power lines ranges between 5mm and 45mm. The typical cruising speed of

a helicopter is between 100MPH and 400MPH. Thus, the distance from the camera on board the

helicopter to the lines to be detected is such that the image width of the wire is typically less than 1

or 2 pixels. Therefore, the contribution from the specular-reflection component is insignificant and can

be set to 0. In addition, the distance from the power lines to the point light source (the Sun) is very

large and .fatt can be set to 1.0. Thus, combining the ambient light model and the point light model,

we have

I = IaKa + IpKpcos(8)

4.2 Coordinate Systems and Mapping Matrices

We will employ three coordinate systems: World System, Airborne System, and Camera System. The

world coordinate system is a coordinate system fixed with the ground. Wire structures are stationary

relative to this coordinate system. The airborne coordinate system moves with the helicopter and it

has 6 degrees of freedom relative to the world coordinate system: 3 degrees of freedom for its origin

(Xa, Ya, Za) and 3 degrees of freedom for its orientation (a,/3,7), where a is called the angle of attack,

IFor example f_tt = rain(v1 +v21,+v3r2' 1) or fatt ----_, where r is the distance of the object from the light source.
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the yawangle,and 7 the roll angle (see figure 5). The transformation (mapping) matrix between

the world and the airborne coordinate systems can be derived as:

.

Xa J XwYa = M3M2M1 Yw

Za J

05

OT

(5)

where,

M1

1 0 0

0 cos a sin a

0 -sina cosa

cos/3 sinf_ 0

-sin_ cos_ 0

0 0 1

M3 -----

cos7 0 -sin7

0 1 0

sin7 0 cos 3'

(6)

The camera coordinate system is a 2D system fixed in the camera image plane. The pixel coordinates of

the images captured by the camera are expressed in this coordinate system. The origin of the camera

coordinate system is chosen to be the same as that of the airborne coordinate system (see figure 6). The

mapping from the airborne system to the camera system is called the perspective transformation or

imaging transformation. This transformation projects 3D points onto a 2D plane. Unlike the regular

coordinate transformation, the perspective transformation is a non-linear transformation. Let f be

the focal length of the camera. Then, the mapping between the camera and the airborne coordinate

systems is given by

Xc Xa

f Ya-f

12
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z_ z_
f Ya-f

(7)

4.3 Geometric Model

There are two kinds of curve structures which may be of importance to the present application: hanging

bridges and power lines (see figure 7). Let # be the linear weight density of the bridge deck, and T

be the cable tension force. Then, with an appropriate choice of the coordinate system, the equation of

the cables for the hanging bridge is that of a parabola,

]A 2

y = _ (8)

Similarly, let p be the linear weight density of a power line, and T be the power line tension force.

With an appropriate choice of the coordinate system, the equation of the power lines is the catenary

13



(a)

(b)

Figure 7: (a) Cables of hanging bridges have a parabolic profile. (b) Cables from power lines have a

catenary profile.
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Figure8: Mappingbetweenwirestructureelementandan imagepixel.

curve:

v = cosh( x)- (9)

4.4 Image Generation of Wire Structures

Knowing the illumination and geometric models, we can use the mapping between the world and the

camera coordinate systems to obtain synthetic images of wire structures. First, the surface of a wire

structure is divided into finite elements. The size of each element is chosen so that its mapped area on

the image plane is less than 1 pixel. Then, the reflected light from this element is mapped to the pixel

within which the center of the element is mapped into (see figure 8). Finally, the pixel gray level value

is computed as

Inew = Iold + Ae/Api:_et * (IR -Iotd) (10)

15



where Iotd and Inew are the image value of this pixel before and after this surface element is mapped,

respectively, IR is the light intensity of the reflected light from this surface element, Ae is the mapped

area of this pixel into the image plane s, and Apizet is the area of a pixel, which is a fixed size for a

given digital camera. The image of a power line structure is generated when all surface elements have

been mapped to the image plane.

4.5 Noise Model

Noise may be added to the generated image. The noise appears as breaks in the image of the wire

structure. The location of the breaks is assumed to have a uniform distribution. The number of breaks

follows a Poisson distribution, which has the following probability density function (pdf):

fpoisson = n---_,exp-_ (11)

where # is the mean of the distribution. The size of the breaks (i.e. number of pixels for a break) is

assumed to follow a Rayleigh distribution, whose pdf is

X z2

fray_eigh = _--_exp 2_--_', x = 0,... ,+inf (12)

with mean 2a.

4.6 Background Image

For images captured from a low-flying helicopter, the background mainly consists of two things: clouds

and landscape. Thus, to simulate realistic images, the background of the images were obtained by

capturing real images using a digital camera. Then, computer generated images of power line structures

_Note that the mapped area may not be rectangular any more, even if the original element is.

16



weresuperimposedonto theserealimages.

5 Performance Evaluation of the Detection Algorithms

A performance evaluation protocol for the detection algorithms was designed based on the one described

in [18]. The protocol measures to what extent the algorithm detects wires present in the image and

whether the algorithm falsely detects wires in the background. These measurements are performed at

both the pixel and the wire level.

5.1 Definitions and Notation

Before describing the protocol, the following terms must be defined:

Ground truth image (Ig). Original data, which is the basis of comparison with the detection result.

Ground truth images are synthetically generated and consist of one or more dark wires on a white

background. Each wire has a different pixel value which is used as an id of the wire.

Number of true wire pixels (Pg) . The number of ground truth image pixels that belong to a wire.

Detected image (Id) Binary image, resulting after the scene (noisy) image has undergone the defined

strategy for detecting edges (Steger's algorithm, followed by a Hough transform).

Number of detected wire pixels (Pd) • The number of detected image pixels that were labeled as

belonging to a wire.

Overlap. If there is an edge pixel at position (x, y) in Ig and there exist an edge pixel at the same

position (x, y) or any of its eight neighbors in Id, then an overlap is said to occur between the

two edge pixels. Let Pg×d be the number of overlap pixels between Ig and Id.

17



5.2 Pixel Level Performance Indices

Next we define a set of indices to measure the performance of the algorithm at the pixel level. These

indices provide information about the number of wire pixels correctly and incorrectly labeled.

True Positives or Pixel Detection Rate (PDR). The pixel detection rate (PDR) is the rate of

positive responses in the presence of instances of the sought feature:

PDR- Pg×d (13)

Pixel False Positives or False Alarms (PFA). The pixel false alarm (PFA) is the rate of positive

responses in the absence of the sought feature:

PFA = 1 Pg×d (14)
Pd

Pixel Recovery Index (PtLI). The pixel recovery index (PRI) combines the PDR and the PFA in

a single index:

PRI=_PDR+(1-a)PFA, 0<c_gl (15)

where a weights the relative importance of true positives and false alarms. (In our study, (_ = 0.5.)

5.3 Wire Level Performance Indices

The pixel level performance criteria defined above do not provide a measure of how many individual

wires or which fragments of each wire were detected. For this purpose, the following wire level indices

are defined:

Wire Detection Rate (WDR). A wire is said to be detected if a number greater than a threshold

18



(in our case50%)of its pixelsaredetected.The wire detection rate (WDR) is the ratio of the

total number of wires detected to the total number of wires in the ground truth image.

WDR = Number of wires in Id (16)
Number of wires in I a

Detection Fragmentation Rate (DFR) A measure of the fragment of each wire detected. The

detection fragmentation rate (DFR) is defined as

DFR = Number of pixels detected in a wire (17)
Number of pixels in the wire

6 Experimental Results

Synthetic images were generated following the procedure described in section 4. Each image had three

wires of different diameters (18 mm., 21.5 mm. and 45 ram.) viewed from different distances ranging

between 560 m. to 2,800 m. Figure 9(a) and (b) show images where the time to collision is 25 seconds

for helicopter speeds of 100 km/h (694.4 m), and 400 km/h (2777.78m), respectively. Edges were

detected in the synthetic images by using an implementation of Steger's algorithm provided by the

author. Examples of the results are shown in figure 9(c) and (d).

The three pixel level indices for the different cable distances are shown in figure 10. As expected, the

performance degrades as the distance increases. Due to time constraints, the results illustrated here

were obtained by applying only Steger's algorithm, without post processing. While the false alarms

are relatively high, as it is seen in figure 9 (e) and (f) post processing does eliminate most of the

false alarms. The wire detection rate and the detection fragment rate are shown in figures 11 and 12,

respectively. These plots show that most of the misdetection errors are due to the thinnest of the wires,

indicating a limitation on the diameter of the wires that can be safely detected.
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Figure 12:
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7 Summary and Conclusions

In this report we addressed the problem of obstacle detection for low-altitude rotorcraft navigation with

emphasis on wire detection. A line detector with sub pixel accuracy proposed by Steger was identified

from the published literature. Steger's algorithm was tested using a set of synthetically generated

images combining real baz_grounds with computer generated wire images. A set of performance indices

at the pixel and the wire level were defined to evaluate the merits of the algorithm for the task at hand.

The results of the experiments show that the algorithm can potentially detect wires, provided that

they are not too thin or very far. It was also observed that the algorithm produces false alarms due to

the severe image clutter. However, most of these false alarms can be successfully eliminated by using a

simple - albeit time consuming - post processing such as a Hough transform that discards short lines.

Future research should explore 1) integration over time of the obtained results to detect very thin (or

distant) wires and 2) use image context - i.e. search for wires near power poles.
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